[1] https://www.youtube.com/watch?v=l_ie4_Yyxjg
[2] Alpaca Breeding/Feeding https://www.youtube.com/watch?v=0sO9rizj7I4
Types Suri, Tuy-Wacaya
[3] Alpaca Breeding (Chigmo, SilluSillu) https://www.youtube.com/watch?v=ksN5x9y5HNw
Software Developer, Programming, Web resources and entertaiment. Desarrollo de software, programaciĆ³n, recursos web y entretenimiento.
[1] https://www.youtube.com/watch?v=l_ie4_Yyxjg
[2] Alpaca Breeding/Feeding https://www.youtube.com/watch?v=0sO9rizj7I4
Types Suri, Tuy-Wacaya
[3] Alpaca Breeding (Chigmo, SilluSillu) https://www.youtube.com/watch?v=ksN5x9y5HNw
Multiclass Image Classification
https://teachablemachine.withgoogle.com/train/image
Thesis
[1] Smooth Interface Reconstruction from Volume Fraction Data Using Variational
Techniques and Level Set Methods
Volume Fractions in Rectangular Grids
Analytical Relations Connecting Linear Interfaces and Volume Fractions in Rectangular Grids
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.536.848&rep=rep1&type=pdf
[1] Markers - A front-tracking algorithm for accurate representation of surface tension (Zaleski)
https://hal.archives-ouvertes.fr/hal-01445441/document
[2] Level Set Methods (LSM)
[2.1] Tutorial Level Set vs Marching Methods https://math.berkeley.edu/~sethian/2006/Explanations/level_set_explain.html
[2.2-1] Part I (Def) https://wiseodd.github.io/techblog/2016/11/05/levelset-method/
[2.2-2] Part II(Application for segmentation) https://wiseodd.github.io/techblog/2016/11/20/levelset-segmentation/
[1] Review https://sh-tsang.medium.com/review-vision-transformer-vit-406568603de0
[2] Colab ViT Tutorial https://colab.research.google.com/github/hirotomusiker/schwert_colab_data_storage/blob/master/notebook/Vision_Transformer_Tutorial.ipynb
[3] ViT pytorch https://github.com/lucidrains/vit-pytorch
[4] Vit Keras https://wandb.ai/ayush-thakur/keras_cv_vit/reports/Image-Classification-Using-Vision-Transformer-and-KerasCV--VmlldzozNTE4MzMz
[5] Fine tunning https://huggingface.co/blog/fine-tune-vit
[6] Full material https://github.com/cmhungsteve/Awesome-Transformer-Attention
Main page
[1] http://terrabrasilis.dpi.inpe.br/en/home-page/
Dataset
[2] http://www.dpi.inpe.br/prodesdigital/dadosn/
[3] 2005-2009 http://www.dpi.inpe.br/prodesdigital/dadosn/mosaicos/
[4] Image 9GB http://www.dpi.inpe.br/prodesdigital/dadosn/mosaicos/2019/
./configure --enable-nonfree --enable-pic --enable-shared
export CC=path_of_gcc/gcc-version
export CXX=path_of_g++/g++-version
cmake path_of_project_contain_CMakeList.txt
make
OR
#Current version is 6, but we need to compile using another version (installed for sure)
$CC="gcc-4.9" CXX="g++-4.9" cmake /CMakeLists.txt
OR$cmake -G "Unix Makefiles" -DCMAKE_CXX_COMPILER=/usr/bin/g++ CMAKE_C_COMPILER=/usr/bin/gcc -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=/usr/local -DWITH_TBB=ON -DBUILD_NEW_PYTHON_SUPPORT=ON -DWITH_V4L=ON -DINSTALL_C_EXAMPLES=ON -DINSTALL_PYTHON_EXAMPLES=ON -DBUILD_EXAMPLES=ON -DWITH_QT=ON -DWITH_OPENGL=ON -DBUILD_FAT_JAVA_LIB=ON -DINSTALL_TO_MANGLED_PATHS=ON -DINSTALL_CREATE_DISTRIB=ON -DINSTALL_TESTS=ON -DENABLE_FAST_MATH=ON -DWITH_IMAGEIO=ON -DBUILD_SHARED_LIBS=OFF -DWITH_GSTREAMER=ON -DWITH_OPENMP=OFF -DWITH_CUDA=OFF -DBUILD_opencv_gpu=OFF ..[1] Diario/Seq https://apps.odoo.com/apps/modules/17.0/sequence_for_journal