Wednesday, September 13, 2017
Español
'A ver' y 'haber' se pronuncian de la misma forma, pero es habitual confundirlas y utilizarlas de manera incorrecta a la hora de escribir. Por eso, a continuación procedemos a distinguirlas tal y como marca la Real Academia Española (RAE):
A ver: Se trata de la secuencia constituida por la preposición a y el infinitivo verbal ver. Se utiliza en los siguientes casos:
Para pedir al interloculor que nos deje ver algo: - Mira mi coche. - ¿A ver?
Para dejar claro una cierta expectación: A ver cuándo viene la ayuda.
Para llamar la atención sobre algo: A ver, ¿por qué no no vinisteis ayer a casa?
En los casos en los que equivale a 'claro' o 'naturalmente': ¡A ver! Estaremos allí sin falta.
En los casos que lleva delante la conjunción si, expresa, bien expectación, curiosidad o interés, a veces también un reto; otras temor o sospecha; y deseo o mandato: ¡A ver si me traes lo que te he pedido!
Haber: Puede tratarse de un verbo o un sustantivo:
Como verbo se emplea como auxiliar seguido de un participio, para formar los infinitivos compuestos de la conjugación: Debe haber faltado a clase.
También como verbo se emplea como infinitivo del impersonal que indica la presencia o existencia de lo designado por el sustantivo que lo acompaña: En su casa debe haber mucho dinero.
Como sustantivo masculino su significado es "conjunto de bienes o caudales de una persona": En su haber contaba con muchos títulos.
Sunday, September 10, 2017
Create Partition and Format for Fix HD
$sudo fdisk /dev/sdb #commands d, n, w
$sudo mkntfs /dev/sdb1
$mkfs.ntfs -f /dev/sdb1
$dmesg | grep sd
$sudo lshw -C disk
Tuesday, September 05, 2017
Skype on Ubuntu and Centos
Skype on Ubuntu 16
[1] http://ubuntuhandbook.org/index.php/2017/03/install-skype-5-0-for-linux-ubuntu-16-04/
Skype on Centos 6.5
When i tried install skype on centos 6.5 i received next message:
error: Failed dependencies: alsa-lib >= 1.0.23 is needed by skype-4.2.0.13-fc16.i586 libQtWebKit.so.4 is needed by skype-4.2.0.13-fc16.i586 libstdc++.so.6(GLIBCXX_3.4.15) is needed by skype-4.2.0.13-fc16.i586 qtwebkit is needed by skype-4.2.0.13-fc16.i586
then i tried next commands and works very well.
1) Install EPEL if you haven't already. #yum install http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm 2) Download the RPM here #wget http://www.bromosapien.net:8080/others/skype-4.2.0 .11-4.el6.i686.rpm 3) Install it as so #yum install skype-4.2.0.11-4.el6.i686.rpm 4) If you receive an error about a GPG key, you may import my key as necessary. #wget http://www.bromosapien.net:8080/others/SYRKIT-GPG- KEY.pub #rpm --import SYRKIT-GPG-KEY.pub
References:
[1] http://community.skype.com/t5/Linux/CentOS-RHEL-6-Skype-4-2-RPM-Installation-Steps/td-p/1740485
NVidia Titan X Card problem
#Grub Settings if doesn't starting
Push shift for stop grub and edit(e key)
Replace quit splash with nomodeset if video drive problems
F10 for start with new settings
#add repository
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
#remove previous drivers
$sudo apt-get purge nvidia-*
titan@titan:~$ sudo apt-cache search nvidia-3
....
nvidia-340 - NVIDIA binary driver - version 340.102
nvidia-361 - Transitional package for nvidia-367
nvidia-361-dev - Transitional package for nvidia-367-dev
nvidia-367 - Transitional package for nvidia-375
nvidia-367-dev - Transitional package for nvidia-375-dev
nvidia-370-dev - NVIDIA binary Xorg driver development files
nvidia-370 - NVIDIA binary driver - version 370.28
nvidia-375 - NVIDIA binary driver - version 375.66
nvidia-375-dev - NVIDIA binary Xorg driver development files
nvidia-378-dev - NVIDIA binary Xorg driver development files
nvidia-378 - NVIDIA binary driver - version 378.13
nvidia-381-dev - NVIDIA binary Xorg driver development files
nvidia-381 - NVIDIA binary driver - version 381.22
nvidia-384-dev - NVIDIA binary Xorg driver development files
nvidia-384 - NVIDIA binary driver - version 384.47
$sudo apt-get install nvidia-375 #A
fter installation, execute next commands:
$sudo mv /usr/lib/nvidia-375/libEGL.so.1 /usr/lib/nvidia-375/libEGL.so.1.org
$sudo mv /usr/lib32/nvidia-375/libEGL.so.1 /usr/lib32/nvidia-375/libEGL.so.1.org
$sudo ln -s /usr/lib/nvidia-375/libEGL.so.375.39 /usr/lib/nvidia-375/libEGL.so.1
$sudo ln -s /usr/lib32/nvidia-375/libEGL.so.375.39 /usr/lib32/nvidia-375/libEGL.so.1
$sudo ldconfig #for verify correct link
PD:
We can't installed titan x on ubuntu 16, we replaced with Geforce 1070
We execute above instructions and that works.
Summary good commands:
$ lspci | grep VGA
#for verify nvidia series
$ lspci -vnn | grep -i VGA -A 12 #for verify kernel driver:nvidia
$ glxinfo | grep OpenGL | grep renderer #for verify opengl
References:
[1] https://askubuntu.com/questions/61396/how-do-i-install-the-nvidia-drivers/680826
[2] Instalar driver Nvidia manualmente no Ubuntu 16.04 (pt) https://linuxdicasesuporte.blogspot.com.br/2017/03/instalar-driver-nvidia-manualmente-no.html
[3] Nvidia drivers on Ubuntu 14.04 http://www.binarytides.com/install-nvidia-drivers-ubuntu-14-04/
Wednesday, August 30, 2017
Grid and Fluids Resources
1) Course , Differences finites
https://www.math.uci.edu/~chenlong/
https://www.math.uci.edu/~chenlong/226/
1) https://github.com/rlguy/GridFluidSim3D
Friday, August 25, 2017
Computer Vision Laboratories & Courses
Labs:
Computer Vision Lab http://vision.ece.ucsb.edu/
Oxford https://www.robots.ox.ac.uk/~vgg/projects.html
University Central of Florida (Computer Vision -crowds dataset) http://vision.eecs.ucf.edu/
Courses:
1) Computer Vision: Algorithms and Applications http://szeliski.org/Book/ (2017)
2) University of California https://cseweb.ucsd.edu/classes/sp16/cse152-a/
3) Computer vision course https://courses.cs.washington.edu/courses/cse455/09wi/Lects/
Thursday, August 24, 2017
Numeric Analysis
[1] [Book] Computational fluid mechanics and heat transfer
http://inis.jinr.ru/sl/Simulation/Tannehill,_CFM_and_Heat_Transfer,2_ed/
Friday, August 11, 2017
Monday, August 07, 2017
Saturday, August 05, 2017
Wednesday, July 26, 2017
Journals for Bio Informatics
https://scfbm.biomedcentral.com/track/pdf/10.1186/1751-0473-3-6?site=scfbm.biomedcentral.com
springer computer vision http://www.springer.com/computer/image+processing/journal/11263 11 8.2
IEEE http://signalprocessingsociety.org/publications-resources/ieee-transactions-image-processing 44 4.3
ELSEVIER Pattern recognition https://www.journals.elsevier.com/pattern-recognition/ 47 4.5
ELSEVIER Medical image analysis https://www.journals.elsevier.com/medical-image-analysis/ 56 4.1
IEEE Medical images https://ieee-tmi.org/ 68 3.9
ELSEVIER https://www.journals.elsevier.com/computer-vision-and-image-understanding/ 112 3.2
ELSEVIER https://www.journals.elsevier.com/image-and-vision-computing/ 165 2.6
ELSEVIER https://www.journals.elsevier.com/computer-vision-and-image-understanding/ 189 2.4
http://www.guide2research.com/journals/computer-vision
Tuesday, July 18, 2017
PDF Signature
Resources:
[1] Make signature and put over pdf https://www.pdfbuddy.com
[2] Draw signature over pdf https://www.pdffiller.com
Machine Learning Lectures & Tools
References:
[1] Clustering notes: http://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/Clustering.pdf
Datasets:
EMOTIV EPOC+ 14 Channel Mobile EEG https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State#
https://archive.ics.uci.edu/ml/datasets
Resources:
[1] Optimizing parameters of Classifier https://weka.wikispaces.com/Optimizing+parameters
[2] CSV to ARFF online http://ikuz.eu/csv2arff/
Sunday, July 09, 2017
Saturday, July 08, 2017
PCA Feature extraction
References:
[1] PCA http://www.visiondummy.com/2014/05/feature-extraction-using-pca/
[2] Reducción de dimensinalidad usando PCA https://www.coursera.org/learn/clasificacion-imagenes/lecture/PaTVm/reduccion-de-descriptores-pca
[3] Opencv code with explanation for dimentional reduction
https://stackoverflow.com/questions/27733002/how-to-use-pca-to-reduce-dimension
[4] Distances http://wwwae.ciemat.es/~cardenas/docs/lessons/MedidasdeDistancia.pdf
Sunday, July 02, 2017
Lectures Descriptors & datasets
References:
1) BoW summary https://prateekvjoshi.com/2014/08/17/image-classification-using-bag-of-words-model/
2) https://github.com/constanton/bLDFV
Datasets
0) 2D hela https://ome.grc.nia.nih.gov/iicbu2008/hela/index.html
2D/3D Hela http://murphylab.web.cmu.edu/data/
1) Biomedical flourcence images
http://mivia.unisa.it/datasets/biomedical-image-datasets/hep2-image-dataset/
2) Microscopic/ Histology, Brain, Retinal and more https://sites.google.com/site/lisaywtang/research/descriptors
3) Other for visualization https://grouplens.org/datasets/movielens/
Monday, June 19, 2017
Animes online
Bleach
1) Sub English https://www4.animesubhd.net/watch/episode/subbed/bleach-238/
2) Sub Spanish http://jkanimeonline.com/ver/bleach-226.html
Wednesday, June 14, 2017
Bag of Features and Texture
Notes
What is the difference between SIFT and Dense SIFT
*SIFT consists of both detection and description while dense sift only uses the descriptor in densely sampled locations [1].
*SIFT identifies interest points using Difference of Gaussian Filtering (DoG) before using Histogram of Oriented Gradients (HOG) to describe these interest points, however Dense-SIFT does not identify interest points, it simply divides the image into overlapping cells before using HOG to describe them. since they both use HOG they both produce 128 dimensional feature vectors [1].
*SIFT is typically computed at interest points. Dense SIFT is computed at every pixel, or every kth pixel. HOG is computed for a rectangular cell array where each cell is usually 8x8 pixels. Dense SIFT and HOG are similar in the sense that they both characterize edginess and orientation around pixels, but the computations are different. Jianxiong Xiao's 2x2 HOG is different than normal HOG. The truth is that once you know how these kinds if features work you can get fancy and histogram them differently, change normalization terms, etc and create your own variant. I spoke with Prof Xiao many times about this when we ovarlapped at MIT [2].
*Firstly, Difference of Gaussians (DoG) can be used for estimating Laplacian of Gaussians (LoG), which are useful for finding edges and blobs. DoG is computationally faster so it is used. Overall, the way in which LoG is used for SIFT and HOG is the fundamental difference between these two feature descriptors. Dense SIFT is exactly as it sounds, SIFT computed densely for every pixel in the image and it helps in image registration, pose estimation, object recognition, etc [2].
Resources
1) BoF imlmentation using SURF, IHOG http://www.cvc.uab.cat/~aldavert/plor/software.html
2) Texture video https://www.youtube.com/watch?v=LQBKIi-Xtbc
3) Textons http://webpages.uncc.edu/~yjaved/publications.html
4) Bag of Visual Words implementation (Functional) http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O
5) Gabor filters histogram, explanation
http://stackoverflow.com/questions/20608458/gabor-feature-extraction
6) Filter Banks, Matlab Source Code
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
7) Texture classification using textons http://courses.media.mit.edu/2008fall/mas622j/Projects/NickLoomis/
References
[1] https://www.researchgate.net/post/What_is_the_difference_between_SIFT_and_Dense_SIFT
[2] https://www.quora.com/Computer-Vision-Is-there-a-difference-if-any-between-dense-SIFT-and-HOG
What is the difference between SIFT and Dense SIFT
*SIFT consists of both detection and description while dense sift only uses the descriptor in densely sampled locations [1].
*SIFT identifies interest points using Difference of Gaussian Filtering (DoG) before using Histogram of Oriented Gradients (HOG) to describe these interest points, however Dense-SIFT does not identify interest points, it simply divides the image into overlapping cells before using HOG to describe them. since they both use HOG they both produce 128 dimensional feature vectors [1].
*SIFT is typically computed at interest points. Dense SIFT is computed at every pixel, or every kth pixel. HOG is computed for a rectangular cell array where each cell is usually 8x8 pixels. Dense SIFT and HOG are similar in the sense that they both characterize edginess and orientation around pixels, but the computations are different. Jianxiong Xiao's 2x2 HOG is different than normal HOG. The truth is that once you know how these kinds if features work you can get fancy and histogram them differently, change normalization terms, etc and create your own variant. I spoke with Prof Xiao many times about this when we ovarlapped at MIT [2].
*Firstly, Difference of Gaussians (DoG) can be used for estimating Laplacian of Gaussians (LoG), which are useful for finding edges and blobs. DoG is computationally faster so it is used. Overall, the way in which LoG is used for SIFT and HOG is the fundamental difference between these two feature descriptors. Dense SIFT is exactly as it sounds, SIFT computed densely for every pixel in the image and it helps in image registration, pose estimation, object recognition, etc [2].
Resources
1) BoF imlmentation using SURF, IHOG http://www.cvc.uab.cat/~aldavert/plor/software.html
2) Texture video https://www.youtube.com/watch?v=LQBKIi-Xtbc
3) Textons http://webpages.uncc.edu/~yjaved/publications.html
4) Bag of Visual Words implementation (Functional) http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O
5) Gabor filters histogram, explanation
http://stackoverflow.com/questions/20608458/gabor-feature-extraction
6) Filter Banks, Matlab Source Code
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
7) Texture classification using textons http://courses.media.mit.edu/2008fall/mas622j/Projects/NickLoomis/
References
[1] https://www.researchgate.net/post/What_is_the_difference_between_SIFT_and_Dense_SIFT
[2] https://www.quora.com/Computer-Vision-Is-there-a-difference-if-any-between-dense-SIFT-and-HOG
Labels:
C/C++,
Computer Vision,
Image Processing,
Linux
Subscribe to:
Posts (Atom)
-
Resources: [1] Hela https://ome.grc.nia.nih.gov/iicbu2008/hela/index.html
-
en inglés se llama “A potentially dangerous Request.Form value was detected from the client”. varias páginas indican dos cosas: 1. agrega...
-
mas plugins http://devsnippets.com/reviews/using-jquery-to-style-design-elements-20-impressive-plugins.html http://www.extjs.com/deploy/dev/...
Odoo 17 - Custom adds
[1] Diario/Seq https://apps.odoo.com/apps/modules/17.0/sequence_for_journal