[1] https://dsilvavinicius.github.io/nise/
Software Developer, Programming, Web resources and entertaiment. Desarrollo de software, programación, recursos web y entretenimiento.
Datasets
[1] Flood Mapping https://ieee-dataport.org/competitions/2024-ieee-grss-data-fusion-contest-flood-rapid-mapping
[1] datos https://www.datosabiertos.gob.pe/
[2] lat/long Perú https://github.com/jmcastagnetto/ubigeo-peru-aumentado
[3] variables vivienda y conocimiento https://www.redalyc.org/journal/6357/635767693004/html/
CONCLUSIONES
El conocimiento sobre dengue, las viviendas que presentan depósitos de basura y agua acumulada están relacionadas a los casos de Dengue en los distritos de Luyando y Rupa Rupa, en la provincia de Leoncio Prado. Persisten conductas de riesgo a pesar del adecuado conocimiento sobre la enfermedad. No se encontró asociación con el tipo de vivienda, género, material predominante en las viviendas, tipo de abastecimiento de agua y servicios higiénicos.
[4] datos amazonia https://www.dge.gob.pe/sala-situacional-dengue/#grafico27
[5] Mapas Perú .shp https://www.geogpsperu.com/2014/03/base-de-datos-peru-shapefile-shp-minam.html
[6] Información Geoespacial Perú https://www.idep.gob.pe/geovisor/descarga/visor.html
[6] Hidrografía https://data.humdata.org/dataset/hidrografia-de-peru?
https://data.humdata.org/dataset
[7] Áreas naturales protegidas https://geo.sernanp.gob.pe/visorsernanp/
[8] Biomasa Brasil https://mapbiomas.org/download
Processing
[1] plotting maps https://ggplot2-book.org/maps.html
[1.1] https://community.rstudio.com/t/geom-label-with-custom-background-and-color-text/45161
[2] poly2nb https://www.rdocumentation.org/packages/spdep/versions/1.2-8/topics/poly2nb
[3] Indicadores demograficos Perú (teoria) https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1743/Libro.pdf
$sudo apt install r-base
* Package installation
install.packages('readr')
* install.packages('sf')
//Configuration failed because libudunits2.so was not found
sudo add-apt-repository ppa:ubuntugis/ubuntugis-unstable
sudo apt-get update
sudo apt-get install libudunits2-dev libgdal-dev libgeos-dev libproj-dev
* install.packages('dplyr')
//dataframe, works with R version >= 3.5
* install.packages('tidyverse') //
Contains other packages (dplyr, ggplot2, etc.)
install.packages('spdep') //
Spatial Dependence: Weighting Schemes, Statistics. A collection of
functions to create spatial weights matrix objects from polygoninstall.packages('GGally') //
extends 'ggplot2'install.packages('leaflet') //
makes it easy to integrate and control Leaflet maps in R.install.packages('coda')
install.packages('CARBayes')
install.packages('CARBayesdata')
install.packages('xlsx')
dependences:
1) java
2)
sudo apt-get install openjdk-11-jdk
3)
sudo R CMD javareconf
4) https://github.com/PCRE2Project/pcre2/releases
4.1) compilation https://www.appsloveworld.com/r/100/371/how-to-solve-lpcre2-8-error-while-installing-rjava-package-in-r
install.packages('readxl')
install.packages('tmap')
[1] rstudio https://linuxconfig.org/rstudio-on-ubuntu-18-04-bionic-beaver-linux
[2] R 3.5 installation on Linux 18 https://rtask.thinkr.fr/installation-of-r-3-5-on-ubuntu-18-04-lts-and-tips-for-spatial-packages
[2] rstudio previous https://docs.posit.co/previous-versions/rstudio/
Highlighting code
[1] Custom C https://tex.stackexchange.com/questions/312789/lstdefinelanguage-cannot-handle-keywords-if-endif
Multi references
\bibliography{paper,references2019}
[1] A pipeline for identification of bird and frog species in tropical soundscape recordings using a convolutional neural network
https://www.sciencedirect.com/science/article/pii/S1574954120300637?via%3Dihub
[2] https://www.frontiersin.org/articles/10.3389/fevo.2021.738537/full
[1] popular code https://github.com/kernc/backtesting.py/tree/master/backtesting
[2] https://blog.devgenius.io/algorithmic-trading-backtesting-a-strategy-in-python-3a136be16ece
[3] https://towardsdatascience.com/backtest-your-trading-strategy-with-only-3-lines-of-python-3859b4a4ab44
[1] Review https://sh-tsang.medium.com/review-vision-transformer-vit-406568603de0
[2] Colab ViT Tutorial https://colab.research.google.com/github/hirotomusiker/schwert_colab_data_storage/blob/master/notebook/Vision_Transformer_Tutorial.ipynb
[3] ViT pytorch https://github.com/lucidrains/vit-pytorch
[4] Vit Keras https://wandb.ai/ayush-thakur/keras_cv_vit/reports/Image-Classification-Using-Vision-Transformer-and-KerasCV--VmlldzozNTE4MzMz
[5] Fine tunning https://huggingface.co/blog/fine-tune-vit
[6] Full material https://github.com/cmhungsteve/Awesome-Transformer-Attention
minted package
References:
[1] https://www.overleaf.com/learn/latex/Code_Highlighting_with_minted
1)
In file included from main.cpp:8:0:
gluvi.h:10:10: fatal error: GL/glut.h: No such file or directory
#include <GL/glut.h> // ...when everyone else puts it here?
^~~~~~~~~~~
$ sudo apt-get install freeglut3-dev
2)
util.h: In function ‘double randhashd(unsigned int)’:
util.h:259:33: error: ‘UINT_MAX’ was not declared in this scope
{ return randhash(seed)/(double)UINT_MAX; }
#include <climits>
3)
array1.h: In constructor ‘Array1<T>::Array1(long unsigned int, const T*, long unsigned int)’:
array1.h:124:12: error: ‘memcpy’ is not a member of ‘std’
std::memcpy(data, data_, n*sizeof(T));
#include <cstring>
fincahuanaco@pisces:~/DRIVE/Research23/viscosity$ g++ testgl.cpp -lglut -lGLU -L/usr/lib -lGL
/usr/bin/ld: cannot find -lGL
collect2: error: ld returned 1 exit status
#Check symbolic link
#Update libGL link, first go to directory and update
$ cd /usr/lib/x86_64-linux-gnu
$ sudo ln -s libGL.so.1.7.0 libGL.so
#back to source directory and try again
[1] First OpenGL code http://www.codebind.com/linux-tutorials/install-opengl-ubuntu-linux/
$gsettings set org.gnome.desktop.interface gtk-theme 'Adwaita-dark'
References:
[1] https://askubuntu.com/questions/1047604/ubuntu-18-04-missing-global-dark-theme-option-in-gnome-tweak-tool
References:
[1] Short review https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications
[2] Coding GNN https://keras.io/examples/graph/gnn_citations/
[2.1] https://keras.io/examples/graph/gat_node_classification/
[0] Create a Story using chatGPT
[1] Text to speach https://www.speachy.ai #no includes english/doesnt work
[2] Text and Speach to Video https://invideo.io/
[3] Free Atatars https://www.synthesia.io
[1] A new library for LLMs and NNs that provides visual
clustering analysis and model interpretability. Super useful.
!pip install arize-phoenix
[1] tools https://graphics.tudelft.nl/software/
[2] Surface from fluid in GPU https://github.com/xiaoxiaoyu1872/PostMPS
References:
[1] https://www.europeanvalley.es/noticias/el-espacio-latente-en-la-ia/
[2] https://rstudio-pubs-static.s3.amazonaws.com/840251_35002e1971484924bc78c24f442e530a.html
[1] https://imglarger.com/Cartoonizer
[2] https://vanceai.com/toongineer-cartoonizer/
[3] Prompt image to cartoon https://deepai.org/machine-learning-model/image-editor
[4] https://www.befunky.com/create/photo-to-cartoon/
[5] Head+ [Body models] https://imagetocartoon.com/ 10/week
[6] 4Adults AI https://metaroids.com/lists/adult-ai-art-tools-that-can-generate-nsfw-ai-images/
https://developer.mozilla.org/en-US/docs/WebAssembly/existing_C_to_wasm
[1] Diario/Seq https://apps.odoo.com/apps/modules/17.0/sequence_for_journal